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Abstract. A pump-probe atomic parity violation (APV) experiment performed in a longitudinal electric
field �El, has the advantage of providing a signal which breaks mirror symmetry but preserves cylindrical
symmetry of the set-up, i.e. this signal remains invariant when the pump and probe linear polarizations
are simultaneously rotated about their common direction of propagation. The excited vapor acts on the
probe beam as a linear dichroic amplifier, imprinting a very specific signature on the detected signal. Our
differential polarimeter is oriented to yield a null result unless a chirality of some kind is acting on the
excited atoms. Ideally, only the APV ( �El-odd) and the calibration ( �El-even) signals should participate
in such a chiral atomic response, a situation highly favourable to sensitive detection of a tiny effect. In
the present work, we give a thorough analysis of possible undesirable defects such as spurious transverse
fields or misalignments, which may spoil the ideal configuration and generate a chiral response leading to
possible systematics. We study a possible way to get rid of such defects by performing global rotations of
the experiment by incremental angular steps φ, leaving both stray fields and misalignments unaltered. Our
analysis shows that at least two defects are necessary for the �El-odd polarimeter output to be affected;
a cos (2φ) modulation in the global rotations reveals the transverse nature of the defects. The harmful
systematic effects are those which subsist after we average over four configurations obtained by successive
rotations of 45◦. They require the presence of a stray transverse electric field. By doing auxiliary atomic
measurements made in known, applied, magnetic fields which amplify the systematic effect, it is possible
to measure the transverse E-field and to minimize it. Transverse magnetic fields must also be carefully
compensated following a similar procedure. We discuss the feasibility of reducing the systematic uncertainty
below the one percent level. We also propose statistical correlation tests as diagnoses of the aforementioned
systematic effects.

PACS. 32.80.Ys Weak-interaction effects in atoms – 32.60.+i Zeeman and Stark effects – 33.55.Fi Other
magnetooptical and electrooptical effects – 42.25.Lc Birefringence

1 Introduction

Atomic parity violation (APV) experiments have been mo-
tivated by their ability to probe neutral current weak
interactions in conditions very different from particle
physics experiments of all kinds and hence to yield valu-
able complementary information [1]. They probe the
electron-quark electroweak interaction at distance scales
very different from those explored in high energy mea-
surements. Moreover, in atoms all the quarks contribute
coherently while at high energies the nuclei and even the
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nucleons are broken and the quarks act independently. In
atoms the issue at stake is the detection of a tiny elec-
tric dipole transition amplitude, strictly forbidden by the
laws of electromagnetism, but allowed by the weak in-
teraction which breaks mirror-symmetry. APV can “show
up” in several ways: optical rotation in allowed M1 transi-
tions [2–4], or electroweak interference effects in the tran-
sition probability of an E-field-assisted forbidden atomic
transition [5], which affects either the population [6–10] or
the orientation in the upper state [5]. In the latter case,
the detection always relies on some fluorescence light mon-
itoring with or without polarization analysis. Since the
interference term involves the product of the parity vio-
lating amplitude Epv

1 and the E-field induced amplitude,
βE, while the transition rate is proportional to |βE|2, the
left-right asymmetry, ∝ Im Epv

1 /βE, decreases as 1/E.



332 The European Physical Journal D

Fig. 1. Schematic of the experiment showing the two
orthogonal symmetry planes defined by the electric
field �El and the linear excitation polarization ε̂ex.
APV gives rise to a tilt θpv of the optical axes of the
excited vapor out of these planes. The incoming probe
polarization ε̂pr provides a superposition of the left

and right-handed (ε̂ex, ε̂
X
pr, �El and ε̂ex, ε̂

Y
pr, �El) config-

urations analyzed. The probe amplification difference
is directly extracted from the optical signals S1, S2,
recorded in each channel of the polarizing beam split-
ter (PBS). Inset: timing of the experiment repeated
at 100 Hz.

More recently, our group has demonstrated a novel kind
of pump-probe experiment [11]. Here the 6S–7S highly
forbidden transition is excited in a longitudinal electric
field �El by an intense pulse of resonant light which lasts for
a time shorter than the 7S lifetime. It is immediately fol-
lowed by the light pulse of a second beam, the probe, res-
onant with the 7S–6P3/2 allowed transition and colinear
with the excitation beam. For short pulse durations, the
population inversion produced by the pump is sufficient to
produce transient amplification of the probe beam. APV
shows up because the probe amplification depends on the
relative orientation of the linear polarization of the exci-
tation laser ε̂ex and the probe laser ε̂pr. Specifically, there
is a chiral contribution to the optical gain of the vapor
characterized by the pseudoscalar (ε̂ex · ε̂pr)(ε̂ex ∧ ε̂pr · �El)
which takes opposite values for two mirror-image config-
urations, as for instance those observed in the two chan-
nels of our polarimeter monitoring ε̂pr (Sect. 3). A 9%
accurate measurement [11], being currently improved, has
validated the method. One of its advantages is to provide
an independent method of APV measurement. It is well
known that one of the main difficulties in measuring the
very small APV effects lies in the discrimination against
systematic effects. These have different origins depend-
ing on the chosen configuration, hence the importance of
a new configuration. In addition, this stimulated emission
detection scheme benefits from several attractive features:
dark-field detection of the left-right asymmetry, reliable,
line-shape independent calibration procedure, amplifica-
tion of the asymmetry itself. For instance, the right-left
asymmetry instead of being a decreasing function of the
applied �El-field benefits from an amplification mechanism
via propagation of the probe beam through the optically
thick excited vapor [12].

Moreover, the cylindrical symmetry of the experiment,
another original feature, plays an important role: the am-
plification asymmetry is expected to remain invariant un-
der simultaneous rotations of the polarizations ε̂ex and ε̂pr

around their axis of propagation [13]. In the present
paper, we explain how this property can be exploited to
discriminate against parity conserving (PC) signals gen-
erated by imperfections, because of their variation under
these rotations. Although some of these signals simulate
the PV effect in a given polarization configuration, their
signatures are signals which break cylindrical symmetry.

A schematic of the ideal experiment represented in Fig-
ure 1 shows the two orthogonal symmetry planes defined
by the electric field �El and the linear excitation polar-
ization ε̂ex. APV gives rise to a tilt of the optical axes
of the excited vapor out of those planes. The incoming
probe polarization chosen either parallel or perpendicular
to that of the excitation beam provides a superposition of
the two configurations of opposite handedness, ε̂ex, ε̂

X
pr,

�El,
and ε̂ex, ε̂

Y
pr, �El, analyzed simultaneously by our polarime-

ter (ε̂Xpr and ε̂Ypr denoting the two components of the probe
polarization at + and −45◦ to its input direction). Since
our polarimeter operates in a balanced mode, the probe
amplification difference, i.e. the right-left asymmetry, is
directly extracted for each excitation laser pulse from the
optical signals S1, S2, recorded for the two channels. The
PV left-right asymmetry is expected to remain invariant
under a global rotation of the experiment, performed by
rotating the polarimeter and beam polarizations altogether
around the common beam axis. This important test can
reveal defects such as transverse �E or �B fields which re-
main fixed in the laboratory frame while the polarizations
are rotated. We discuss how this can be used to minimize
the systematic errors below a known level. This is even
more important given that we are currently improving our
experiment with the aim of reducing the statistical error
down to the one percent level.

In this paper, we first explain the origin of the chiral
optical gain in terms of a parity violating contribution to
the atomic alignment in the 7S state induced by linearly
polarized 6S–7S excitation (Sect. 2). Next, we introduce
a general formalism necessary for a rigorous treatment of
experimental defects (Sect. 3). The basic principle of our
polarimetry measurements is presented and used to ob-
tain the relation between the PV atomic alignment in the
excited state and the “atomic” imbalance of the polarime-
ter (Sect. 3). This relation is useful to predict the varia-
tions of the signals generated by defects under simulta-
neous rotations R(k̂, φ) of the input polarizations ε̂pr and
ε̂ex about the common beam direction k̂ by an angle φ,
which leave invariant the APV and the calibration signals.
As an example we treat the perturbation induced by the
simultaneous presence of transverse electric and magnetic
fields, �Et and �Bt. We show that this leads to a parity con-
serving, magnetoelectric optical effect, which, depending
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on the property of �Et and �Bt under the �El-field reversal,
may simulate the PV signal in a fixed ε̂ex, ε̂pr configura-
tion, but which exhibits characteristic modulations under
rotations of the polarizations (Sect. 4). In this particular
case, it is easy to arrive at a judicious choice of the ro-
tation angle φ. We show that only four different ε̂ex, ε̂pr

configurations are necessary to extract maximal informa-
tion about the systematic effect generated by the stray
fields: namely those generated from an initial configura-
tion by three steps of successive 45◦ rotations of both ε̂ex

and ε̂pr. This result can be extended to systematics aris-
ing from two transverse magnetic fields, one odd, and the
other even in �El-reversal (Sect. 5). This property is fur-
ther extended and can be associated to the most general
structure of the atomic density matrix for the 7S state.
We show that a misalignment of the excitation and probe
beams can have the same effect as a transverse magnetic
field. Finally, taking into account the possible magnitude
of the residual defects on our set-up, we discuss at what
level we might reasonably expect to reduce the system-
atic uncertainty (Sect. 6). In addition, we present a quite
independent diagnosis based on a statistical test to be per-
formed on the PV data which could reveal the presence of
a harmful systematic effect of magnetoelectric origin.

2 APV manifestation via a chiral optical gain

2.1 APV contribution to the angular anisotropy
in the excited state

When an atomic vapor is excited with a linearly polar-
ized laser beam, resonant at the frequency of an E1 al-
lowed transition, it is easily verified that the excited state
possesses an alignment with a privileged direction deter-
mined by the polarization of the excitation beam. More
precisely the quantum average of the operator |�F · ε̂ex|2
taken over the density matrix ρe(t = 0) of the 7S, F ′
state at the excitation time t = 0, differs from the typical
value for an isotropic distribution, i.e. Tr{ρe(0)|�F ·ε̂ex|2} �=
(|�F |2/3)Tr{ρe(0)}.

Here we excite the vapor via one hyperfine compo-
nent 6S, F − 7S, F ′ = F ± 1 of the highly forbidden tran-
sition. The effective transition dipole �deff can be written
[1,14]:

�deff = −iβ�σ ∧ �El +M1�σ ∧ k̂ − iImEpv
1 �σ. (1)

The components of the electronic spin operator �σ are the
Pauli spin matrices. The first contribution is the parity
conserving (PC) amplitude induced by the applied elec-
tric field parallel to the wave vector k̂ ‖ ẑ of the excitation
beam and associated with the vector part of the transition
polarizability β. The scalar part �d = −α�E can be ignored
on a F → F ′ = F ± 1 transition. Hyperfine mixing in
presence of a transverse magnetic field will be considered
in Section 4.5. The second contribution is associated with
the M1 amplitude, but it will be shown later on (Sect. 2.4)

to lead only to very small effects. The last term in equa-
tion (1) arises from the PV electric dipole amplitude Epv

1
characteristic of the weak interaction. If we ignore for the
moment the M1 contribution and if we choose �El = ±Elẑ,
we can rewrite the transition amplitude as follows:

�deff · ε̂ex = ∓iβEl �σ ∧ ẑ · (ε̂ex ± θpv ẑ ∧ ε̂ex),
with θpv = −ImEpv

1 /βEl. (2)

This equation has a simple physical interpretation: the
effect of the PV transition amplitude is equivalent to a
rotation of the linear polarization ε̂ex about �El by the
small angle θpv, typically ∼10−6 rad for El ≈ 1.7 kV/cm.
The sense of this rotation changes when the direction of �El

is reversed. The angle θpv is the important parameter to
be determined since it yields the ratio between the PV and
the Stark amplitudes. Provided the El-field magnitude is
known, one can use a value of θpv to obtain the weak
charge QW of the Cs nucleus by relying on atomic physics
calculations of Epv

1 /QW [15–18].

2.2 Alignment tensor of the excited state

The Stark-induced transition creates an excited
state 7S, F ′ endowed with an alignment. For the sake of
completeness we summarize here some basic definitions.
First we introduce the second-rank tensor operator T̂ (2)

constructed from the total angular momentum �F . In
order to avoid unnecessary algebraic complications we
shall use a Cartesian basis set:

T̂
(2)
ij =

1
2
(Fi Fj + Fj Fi)− 1

3
�F 2δi,j . (3)

We define now the traceless symmetric alignment ten-
sor Aij by the following quantum averages:

Aij(t) = Tr
{
ρ(t) T̂ (2)

ij

}
, implying

∑
k

Akk(t) = 0. (4)

It is convenient to introduce as a visual tool the alignment
ellipsoid defined by the quadratic equation:

∑
i,j

xi xj

(
Aij +

1
3
F ′(F ′ + 1) δi,j

)
=

1
3
F ′(F ′ + 1).

In absence of alignment (Aij = 0) the ellipsoid reduces to
the unit sphere.

2.2.1 General expression

For the Stark-induced transition induced by the vector
polarizability, in contrast to allowed electric dipole ones,
the preferred direction of the excitation process is not ε̂ex

but rather the orthogonal direction Êl ∧ ε̂ex. If we ignore
the PV contribution, the alignment created in the excited
state can be represented by an ellipsoid of revolution sym-
metry about a direction parallel to k̂∧ ε̂ex which preserves
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the planes of symmetry of the experiment defined by the
common direction of �El and k̂ and by ε̂ex (see Fig. 1).
The effect of the PV contribution is to tilt this ellipsoid
about �El by the small angle θpv. As a result, the align-
ment no longer preserves the symmetry planes of the ex-
periment: this is the manifestation of parity violation in
the pump-probe experiment discussed presently.

We are going to present a formalism which can be ap-
plied to more general situations than the Stark-induced
6S → 7S transition and which will allow us to incorpo-
rate the Epv

1 and M1 contributions as well as those asso-
ciated with experimental defects breaking the cylindrical
symmetry of the ideal experiment. The effective transition
operator Teff is then given by:

Teff = �b · �σ,
where �b = i β �E ∧ ε̂ex + i ImEpv

1 ε̂ex −M1k̂ ∧ ε̂ex. (5)

The direction of �E is for the moment arbitrary. The laser
selects only one hfs component nS, F → (n+1)S, F ′. The
excited state density matrix, up to a normalization factor,
is then given by:

ρe = PF ′ Teff PF ρgPF T
†
eff PF ′ , (6)

where ρg is the restriction of the density operator to the nS
ground state. PF is the projector on the nS, F sublevel
and PF ′ the projector on the (n + 1)S, F ′ sublevel. The
6S, F ground state remains at thermal equilibrium so that
we can take ρg = PF as a good approximation whose limits
of validity in presence of a magnetic field will be considered
hereafter. Since we are mostly interested in the 6S, F →
7S, F ′ transition with F ′ �= F , it is convenient to write
PF ′ = 1I−PF . We apply the Wigner-Eckart theorem to the
spin operator �σ = 2�S acting in the hyperfine subspace F :

PF �σPF = 2gF PF
�F ,

where gF = −gF ′ = 2(F − I)/(2I + 1), (7)

and I is the nuclear spin, in our case equal to 7/2 for
natural cesium, 133Cs.

Using the following identities involving the c-number
vector �b:

PF ′�σ ·�bPF�σ ·�b∗ PF ′ = PF ′�σ ·�b (1I− PF ′)�σ ·�b∗PF ′

= PF ′ |�b|2 − PF ′�σ ·�bPF ′�σ ·�b∗ PF ′ ,

we readily obtain the excited state density matrix ρe(0)
at the excitation time t = 0:

ρe(0) =
(
|�b|2 − 4g2

F ′ (�F ·�b)(�F ·�b∗)
)
PF ′ . (8)

Later on, it will be of interest to consider the transfor-
mation of the excited state density matrix under a space
rotation R: ρe(0)→ U(R) ρe(0)U(R)†, where U(R) is the
unitary operator associated to R. Using the following basic
relations which result from the very definition of U(R), we

can write U(R)�b · �F U(R)† = (R−1 �F )·�b = �F ·(R�b), we ar-
rive to a simple rule for the density matrix rotation trans-
formation: on the r.h.s of equation (8) replace the vectors�b
and �b∗ by the rotated vectors: �b→ R�b , �b∗ → R�b∗.

Let us now evaluate the 7S alignment tensor compo-
nents Ae

i j(0):

Ae
i j(0) = Tr

{
ρe(0)

(
FiFj − F ′(F ′ + 1)

3
δi,j

)}

= −4g2
F ′

(
Tr

{
(�F ·�b)(�F ·�b∗) Fi FjPF ′

}

− |�b|2(2F ′ + 1)
(
F ′ (F ′ + 1)

3

)2

δi,j

)
. (9)

In order to proceed, we have to extract from the rank-
four tensor operator Ti j k l = Fi Fj Fk Fl the scalar pieces
which are the only ones having non-zero traces. They are
obtained by contracting two pairs among the four indices
in all possible ways. We arrive in this manner at the follow-
ing expression for the needed trace, where we have used
its invariance under circular permutation of the indices:

Tr{Ti j k l} = A(δi ,j δk ,l + δi ,l δj ,k) +B δi ,k δj ,l. (10)

The rational numbers A and B can be easily obtained
as linear combinations of S2(F ′) and S4(F ′) where
Sn(N) =

∑m=N
m=0 mn by calculating directly TrF 2

z and
TrF 4

z and comparing with the results obtained by using
equation (10):

A = F ′(F ′ + 1)S2(F ′)− S4(F ′)

=
1
30
F ′ (F ′ + 1) (2F ′ + 1)(2F ′2 + 2F ′ + 1)

B = 4S4(F ′)− 2F ′(F ′ + 1)S2(F ′)

=
1
15

(F ′ − 1)F ′ (F ′ + 1) (2F ′ + 1)(F ′ + 2). (11)

We have now all we need to compute the alignment ten-
sor Ae

i j(0), which is expected to be proportional to the
traceless second-rank, symmetric, real tensor built from
the complex vector �b:

Ae
i j(0) = −4 g2

F ′F
(

1
2
(bi b∗j + b∗i bj)−

1
3
|�b|2 δi ,j

)
, (12)

where the angular momentum factor F is given by:

F = A+B

=
1
30
F ′ (F ′ + 1) (2F ′ − 1) (2F ′ + 1) (2F ′ + 3) .

2.2.2 The Stark alignment tensor in the ideal longitudinal
configuration

We are going to apply the formula (12) to the Stark am-
plitude which is always the dominant one in realistic ex-
perimental situations. In the ideal experiment the applied
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electric field �El is taken colinear with the wave vector �k,
i.e. �El ∧ �k = 0. The vector �b is then given by:

�bSt = i βElÊl ∧ ε̂ex = i βEl ĥ, with ĥ = Êl ∧ ε̂ex. (13)

In this paper to a given vector �v there corresponds a unit
vector v̂ = �v/v with v = |�v|.

We get then immediately the Stark-induced alignment
tensor by inserting �bSt in equation (12):

ASt
i j (0) = −4 g2

F ′β2 E2
l F

(
ĥi ĥj − 1

3
δi ,j

)
. (14)

2.2.3 PV effect on the Stark alignment tensor

To get the first-order PV correction ∆pvAi j(0) to the
Stark alignment tensor we perform a first order expan-
sion of Ae

i j(0) by writing �b = �bSt + ∆pv
�b with ∆pv

�b =
iImEpv

1 ε̂ex. Let us now insert in formula (12) the first
order correction to bi bj:

∆pv bi bj = (bSt)i ∆pvb
∗
j + (bSt)

∗
j ∆pvbi

= β El ImEpv
1

(
ĥi (ε̂ex)j + (i↔ j)

)
.

We get immediately the PV correction to the alignment
tensor:

∆pvAe
i j(0) = −4 g2

F ′β2E2
l F θpv

×
(
(Êl ∧ ε̂ex)i (ε̂ex)j + (i↔ j)

)
. (15)

As we have already noted, the effect of the Epv
1 transition

amplitude is to rotate the alignment ellipsoid by a small
angle θpv about the direction of Êl. The alignment tensor
is then expected to be subjected to the same infinitesi-
mal rotation. This result is easily verified by showing that
∆pv

�b ≡ iImEpv
1 ε̂ex = θpvÊl ∧�bSt, this following immedi-

ately from the identities:

θpv = −ImEpv
1 /βEl and Êl ∧ (Êl ∧ ε̂ex) = −ε̂ex.

2.2.4 Absence of alignment induced by the Stark-M1

interference

The M1 contribution to the vector �b appearing in equa-
tion (5) is given by �bM1 = M1k̂ ∧ ε̂ex. The crucial point is
that �bM1 is a purely real vector, while �bSt is an imaginary
one. It follows immediately that the Stark-M1 interference
contribution to (bi b∗j + b∗i bj)/2 = Re(bi b∗j) vanishes since
(bSt)i (bM1)∗j +(bM1)i (bSt)∗j is clearly imaginary. In conclu-
sion, the Stark-M1 interference term does not contribute to
the alignment tensor within the hypotheses leading to equa-
tion (12). A crucial one of these concerns the 6S, F den-
sity matrix which is assumed to be a thermal distribution:
ρg ∝ PF . This property does not hold in presence of a
static magnetic field �B, if the excitation beam intensity

varies significantly within a frequency interval of the or-
der of the Zeeman splittings. We will show later on, that
if �E has a component transverse to �k, then the Stark-M1

interference leads to a non-zero alignment contribution.
It is worth stressing the importance of the result ob-

tained in this section. The M1-Stark interference is a
potential source of systematics which has required spe-
cial care in all experiments performed on highly forbid-
den transitions in the transverse field configuration so
far [5,10]. Thus the absence of M1-Stark interference in
the longitudinal field configuration examined here is a sig-
nificant advantage. In this configuration, it is clear that
the π/2 phase difference between the M1 and the Stark
amplitudes prevents there being any interference whatever
the excitation polarization, and this even if the atomic sys-
tem is perturbed by a magnetic field.

It is only in presence of a stray transverse electric field
that we shall have to consider the possibility of systematic
effects associated with the magnetic dipole amplitude.

2.3 Optical anisotropy resulting from the APV
alignment

While the population inversion causes an amplification
of the probe beam, its polarization is altered by the an-
gular anisotropy created in the excited state. We obtain
the atomic anisotropies in the excited state by detecting
the optical anisotropies that they induce on the amplified
probe beam. Here the vapor is endowed with an atomic
alignment. Associated with the alignment ellipsoid is an
ellipsoid of refractive index for light resonant with one
hyperfine component of the 7S − 6P3/2 transition. The
relative magnitude of the axes depends on the hyperfine
component. The eigenaxes are those of the ellipse result-
ing from the intersection of the alignment ellipsoid by a
plane orthogonal to the wave vector k̂ of the probe beam.
The imaginary part of the refractive index is responsible
for the gain which takes two different values depending
on whether the linear polarization ε̂pr is aligned along one
or the other eigenaxis, an effect generally dubbed linear
dichroism, while the real part is responsible for birefrin-
gence of the vapor. For the probe beam which propagates
along ẑ, the Stark and the PV alignments both induce
a linear dichroism, but the former with axes along ε̂ex

and Êl ∧ ε̂ex and the latter with axes X̂ and Ŷ . It is this
latter contribution, the optical anisotropy resulting from
the APV alignment, which gives rise to the APV signal in
the pump-probe experiment. As a consequence the global
gain matrix of the excited vapor has its axes tilted with
respect to ε̂ex by the tiny angle θpv. The tilt is opposite for
two mirror-image configurations associated with opposite
signs of the pseudoscalar Schir = (ε̂ex · ε̂pr)(ε̂ex ∧ ε̂pr · �El).
Hence the notion of a chiral optical gain. The probe po-
larization aligned along ε̂ex at the cell entrance actually
does not lie along an eigenaxis. Consequently its direc-
tion is modified during the propagation of the probe beam
through the vapor. This modification is measured using
polarimetry methods which allow us to obtain an absolute
determination of θpv, as explained in the next section.
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2.4 Absolute calibration of the tilt angle θpv

The physical interpretation of APV given in Section 2.1
suggests a natural method of calibration. The APV con-
tribution can be seen as resulting from the dominant PC
contribution via an infinitesimal rotation of angle θpv

about Êl. By performing small rotations of the excitation
polarization by a known angle θcal, while keeping ε̂pr un-
changed at the input, we can induce an optical anisotropy
for the probe exactly similar to the APV one, even though
it is P-conserving. The ratio of these two effects, measured
under identical conditions and distinguished by their op-
posite dependence on θcal and �El reversals, yields directly
θpv/θcal. By measuring the ratio, it is possible to eliminate
different effects affecting the magnitude of each signal in-
dividually which would otherwise be difficult to predict
quantitatively (see Sect. 3.2).

3 Balanced-mode polarimetry measurements
on the amplified probe beam

3.1 Operating conditions providing polarimeter
imbalances insensitive to the PC alignment

Since we want to measure a small PV anisotropy in pres-
ence of a large PC one, we orient the polarimeter so that
it is insensitive to the latter, and fully sensitive to the
former. We have chosen a polarization beam splitter cube
having its axes X̂ and Ŷ oriented at ±45◦ to the excitation
and probe polarizations. The input probe polarization is
a superposition of the two eigenpolarizations, ε̂X and ε̂Y
of the polarimeter:

ε̂pr = (ε̂X + ε̂Y )/
√

2. (16)

In absence of the excitation beam, the electronic gains
of the two channels are adjusted to ensure equality of
the probe signals detected in both channels, SX = SY .
However, due to possible drifts in the electronic or op-
tical components, one has to isolate the true atomic
contribution to the imbalance. For each excitation laser
pulse, the imbalance for the amplified probe pulse,
Damp = (SX − SY )/(SX + SY ) is compared with a ref-
erence value Dref , measured when all the 7S excited
atoms have decayed. Thus the doubly differential signal,
Damp − Dref , selects at the laser repetition rate a true
atomic effect, Dat, free of the polarization defects present
on the probe beam path.

3.2 Relation between atomic alignment
and polarimeter imbalance

Since the probe polarization is adjusted at cell entrance
to be parallel to ε̂ex = ŷ which (without APV) defines the
eigenaxes of the vapor gain, it should remain parallel to
one eigen axis of the gain during propagation through the

vapor. An atomic imbalance is expected to arise specifi-
cally from a difference of light amplification for a probe
beam polarized along X̂ or Ŷ .

In a previous publication (see [20] Eq. (20) or Sect. 5.2)
we have calculated the intensity and polarization modi-
fication of a linearly polarized probe beam resonant for
a single hyperfine component of the probe transition
7S1/2 → 6P3/2. Following a similar approach, we shall
write the light intensity difference SX − SY as an expres-
sion proportional to the contraction of the alignment ten-
sorAe

i j(τ) — at the time of detection — with the traceless
symmetric tensor Di j which characterizes the differential
two-channel polarimeter:

Di j = (ε̂X)i (ε̂X)j − (ε̂Y )i (ε̂Y )j . (17)

Let us denote by �D the electric dipole moment opera-
tor and by �dse the effective dipole operator which induces
specifically the stimulated emission transition 7S, F ′ →
6P3/2, Fp:

�dse = PFp
�D PF ′

where PFp is the projection operator on the 6P3/2, Fp sub-
level while PF ′ is relative to the 7S, F ′ sublevel. (Note
that �dse is non-Hermitian, but still a vector operator.)
Now let us introduce the second-rank tensor operator:
Oi j = (dse

i )† dse
j whose action is restricted to the 7S, F ′

subspace. Applying the Wigner-Eckart theorem, we can
write:

Oi j = (dse
i )† dse

j = Cse(6P3/2 Fp|7SF ′)Fi Fj PF ′, (18)

where Cse(6P3/2 Fp|7SF ′) is a real constant (explicitly
calculated in [20]).

We now have all the tools to obtain the result an-
nounced above.

SX − SY ∝ Tr{ρe(τ) (�dse · ε̂X)† (�dse · ε̂X)− (X → Y )}
∝ Di jTr{ρe(τ)Oi j} ∝ Di jAe

ij(τ) , (19)

where the two tensors appearing in these expressions have
to be contracted, i.e. summations have to be performed
upon the repeated indices.

Let us calculate the imbalance signal SX − SY using
the alignment tensors Ae

i j derived in the previous section
and given in equations (14) and (15). We deal first with
the Stark-induced alignment:

SX − SY ∝ Di j · ASt
i j (0) = −4g2

F ′ β2E2
l F Di j ĥi ĥj

= −4g2
F ′ β2E2

l F
×

(
(ε̂X · ĥ)2 − (ε̂Y · ĥ)2

)
= 0.

The above cancellation follows immediately from the two-
channel polarimeter eigenaxis expressions in a defect-free
experimental set-up:

ε̂X,Y =
1√
2

(
ε̂ex ± ε̂⊥

ex

)
with ε̂

⊥
ex = ẑ ∧ ε̂ex, (20)



M.-A. Bouchiat et al.: Cylindrical symmetry to distinguish APV from magnetoelectric optical effects 337

ẑ being a direction colinear to k̂ and Êl which remains
fixed in the laboratory whatever parameter reversal is
made. This obviously implies: ε̂X · ĥ = −ε̂Y · ĥ.

In absence of defects, such as deliberate or accidental
optical misalignments, stray electric and magnetic fields
— to be discussed extensively in the next section — the
only possible source for non-zero polarimeter imbalance
will turn out to be the PV alignment calculated in the
previous section (see Eq. (15)). Let us insert ∆pvAe

i j(0) in
the formula (19) giving SX−SY in terms of the alignment
tensor:

(SX − SY )pv ∝ Di j ·∆pvAe
i j(0)

= −4g2
F ′ β2E2

l θpvF Di j

(
ĥi( ε̂ex)j + (i↔ j)

)

= −4g2
F ′ β2E2

l θpv F
(
(ĥ · ε̂X) (ε̂ex · ε̂X)− (X → Y )

)

= −4g2
F ′β2E2

l θpvF
(
(Êl ∧ ε̂ex · ε̂X)(ε̂ex · ε̂X)−(X → Y )

)
.

(21)

In the above formula appears, as expected, pseudo-scalars
built from the physical vector objects involved in the ex-
periment namely the longitudinal field �El, the laser polar-
ization ε̂ex and the polarimeter eigenaxes:

Schir(ε̂X , Êl) = (Êl ∧ ε̂ex · ε̂X) (ε̂ex · ε̂X) = −Schir(ε̂Y , Êl).
(22)

Note that the last equality reflects the fact that we ob-
tain ε̂Y from ε̂X by performing a mirror reflection with
respect to the plane containing ε̂ex and �El.

All of this means that the imbalance Dat = (SX −
SY )/(SX +SY ) allows one to search for the tiny PV effect
using dark-field detection. In a general way such an atom-
induced imbalance should vanish unless some chirality is
present in the experiment.

In equation (19), τ is the instant of detection which
differs from the instant of excitation taken for origin of
time. This means that in presence of a magnetic field we
have to take into account the evolution of the excited state
over the time interval which separates the instants of ex-
citation and stimulated emission.

We can write the general relation:

Dat = K Di j · Aij(τ). (23)

Several effects are embodied in the evaluation of the pro-
portionality coefficientK: not only transition probabilities
depending on the hyperfine quantum numbers of the hy-
perfine states connected by the probe transition [20], but
also the probe pulse time and duration, the optical thick-
ness of the vapor at the probe laser wavelength as well as
saturation effects induced by the probe beam [21]. The cal-
culation of Dat involves the problem of the amplification
of the probe while it propagates through the vapor. This
has been considered previously both theoretically [21] and
experimentally [12]. We refer the reader to previous work,
for the evaluation of the amplification factor common to
both SX and SY as well as the asymmetry amplification
which affects directly the difference SX −SY and thereby

the atomic imbalance Dat. The crucial point here is that
our measurement method includes a calibration procedure
allowing us to eliminate K by performing ratios between
atomic imbalances of different physical origin but similar
optical properties. To do this we apply a small rotation
of ε̂ex of angle θcal around ẑ before entrance in the cell,
the sense of this rotation being independent of the direc-
tion of Êl. The calculation of the corresponding correc-
tion to the alignment tensor is mathematically identical
to that of ∆pvAi j(0) except for the trivial replacement
θpvÊl → θcal ẑ. This yields the atomic imbalance:

Dat(θcal−odd, El−even) = −8 g2
F ′β2E2

l θcalK

×F Schir(ε̂X , Êl) (ẑ · Êl), (24)

with which we compare the atomic APV imbalance:

Dat(θcal−even, El−odd) = −8 g2
F ′β2E2

l θ
pv K

×F Schir(ε̂X , Êl),

allowing us to calibrate θpv in terms of the known an-
gle θcal. All the atomic factors embodied in K, as well
as E2

l are eliminated in the ratio of both imbalances,
provided they are measured under identical conditions. As
long as this important condition is fulfilled, the relation

Dat(θcal−even, El−odd)
Dat(θcal−odd, El−even)

=
θpv

θcal
(ẑ · Êl) (25)

holds whatever the detection conditions, for any hyperfine
component. The factor (ẑ · Êl) = ±1, depending on the
sign of the projection of �El on the fixed direction ẑ, will
appear frequently in the forthcoming formulae.

3.3 Symmetry breaking associated
with a Bz(El − odd) magnetic field

Since it is a pseudo-vector, a longitudinal magnetic field,
breaks the mirror reflection symmetry with respect to the
plane containing ε̂ex and �El. It does not however break
the cylindrical symmetry of the experiment. Therefore, it
escapes the methods of diagnosis based on global rota-
tions of the experiment, discussed in the present paper.
This effect discussed previously [24] is quoted here just
for completeness.

A magnetic field Bz causes Larmor precession of the
angular momentum �F about the ẑ axis for the average
duration τ which separates the time of stimulated emis-
sion from the time of excitation. Consequently, after evo-
lution of the density matrix in the excited state, the axes
of the Stark alignment Ai j(τ) no longer lie in the sym-
metry planes. They deviate by an angle γF ′Bzτ (with
γF ′Bz = ωF ′ being the angular precession frequency).
This effect is exactly similar to the calibration effect pro-
vided the angle θcal be replaced by γF ′Bzτ . A problem
arises only if the Bz field is odd under �El reversal, in
which case there arises a signal simulating exactly the
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PV effect. To account for it, we measure the magnitude
of the Bz-odd field seen by the atoms. This is performed
by measuring the optical rotation (see Sect. 3.4) induced
by Bz-odd on a probe transition which is particularly sen-
sitive 7S, F = 4 → 6P3/2, F = 5 [25]. In our past mea-
surements [11] it has vanished part of the time and never
exceeded 50 µG for the rest of the time. Then, we can
correct for its effect on the PV signal.

3.4 Optical rotation detection

In the polarimeter configuration chosen here, the imbal-
ance is not only sensitive to linear dichroism relative to
the X̂, Ŷ axes but also to an optical rotation [22]. Con-
sequently, a contribution to the atomic imbalance may
arise from an atomic orientation in the 7S state, P(τ) =
Tr{ρe(τ) �F · ẑ}. Strictly speaking it corresponds to an ad-
ditional term in equation (23) (see [20]) which we have
omitted here for two reasons: (i) it vanishes in the ideal
APV configuration; in real conditions, only combination of
imperfections can lead to a non-zero signal; (ii) instead of
a linear dichroism effect, this corresponds to an optical ro-
tation of the linear probe polarization, i.e. an optical effect
which our method of measurement allows us to discrim-
inate unambiguously against linear dichroism. The latter
causes the probe polarization to rotate towards the axis
of larger gain, while the sense of the rotation imposed by
an optical activity is the same whatever the direction of
the input polarization. Therefore, in order to distinguish
between both effects, we use their opposite behavior when
the direction of the probe polarization is switched in the
vapor cell, with a half wave plate (λ/2)pr, from ‖ to ⊥ ε̂ex,
configurations respectively dubbed para and ortho. By ro-
tating the probe polarization through 90◦ at cell entrance
and by leaving the polarimeter and the excitation polar-
ization unaltered, we switch the probe polarization from
one bisector of the polarimeter eigenaxes to the other.
Hence, the polarimeter still operates in balanced mode and
the imbalance associated with the linear dichroism effect,
once calibrated, remains identical in magnitude and sign.
The effect of optical rotation on the other hand changes
sign and can be rejected [22].

With this method, the probe polarization is rotated
by 90◦ with respect to the polarimeter axes. Another pos-
sibility consists in applying a second 90◦ rotation to the
probe polarization outgoing from the cell. Without tilts
induced by the vapor, the probe polarization analyzed by
the polarimeter in the ortho configuration recovers the
same direction as that it has in the para one. This method
a priori equivalent to the former one, has the advantage to
make easy the use of a polarization magnifier, a dichroic
component [26] which would otherwise come into conflict
with measurements involving probe polarization rotations.

3.5 Global rotation of the experiment
about the beam axis

As explained previously, the balanced-mode operation of
the polarimeter, favoured for optimal detection of small

asymmetries, requires that at the cell entrance we choose
either a para or an ortho configuration. When we ro-
tate ε̂ex by 45◦ increments, we simultaneously rotate ε̂pr

by the same angle. We do this for both the para and the or-
tho configurations. Thus, eight different pump-probe con-
figurations (four para and four ortho) are used for the
measurements. In principle, when we rotate ε̂ex we should
rotate the polarimeter in order to ensure that its eigenaxes
remain at ±45◦ angle from ε̂ex, the axes of the main Stark
alignment to which we want to remain insensitive. But this
operation is hardly compatible with excellent mechanical
stability. We have found that it can be advantageously
replaced by a second 45◦ rotation of ε̂pr at the cell exit,
opposite to that performed at the entrance. All polariza-
tion rotations are performed by insertion and removal of
half-wave plates placed on each input beam and before
the polarimeter on the probe emerging from the cell. The
output plates are oriented and controlled in a way which
allows the analyzed probe polarization, in absence of tilts
induced by the vapor, always to lie along the same bi-
sector of the polarimeter eigen-axes, whatever the input
configuration of the ε̂ex, ε̂pr polarizations.

We can verify that this operation, where the cell is
sandwiched between two half wave plates having their axes
parallel, is physically equivalent to rotating the input po-
larization and the polarimeter by the same angle as that
carried out by one half wave plate. Let us introduce the
transformation T produced by the vapor cell whose ef-
fect on ε̂pr we want to measure and the transformation
applied by insertion of a half wave plate Sδ, which is a
symmetry with respect to the plate axes of direction δ.
With the plates absent, the polarizations at the input
and output of the cell are: ε̂out = T ε̂in; with the input
and output plates inserted, ε̂′in = Sδ ε̂in at cell entrance,
while at entrance of the polarimeter ε̂′out = (SδTSδ)ε̂in.
We note that the scalar product is conserved in the op-
eration Sδ and that (Sδ)2 = 1I. The measured quan-
tity in each channel is the square of the scalar product
X̂ · ε̂′out ≡ X̂ · (SδTSδ)ε̂in ≡ (SδX̂) · (T Sδ ε̂in). Hence,
we measure the same quantity as if we had applied the
same transformation to the polarimeter and to the input
polarization.

To simplify the following discussion we suppose here-
after that the polarimeter is rotated in the same way as
the probe polarization and that the axes x̂, ŷ, X̂ and Ŷ are
linked to the input polarizations and to the polarimeter in
their global rotation about the beam axis. During the rota-
tions, the two components of the probe polarization along
the eigen-axes of the polarimeter, ε̂X , ε̂Y , remain at ±45◦
to the input probe polarization, both in para and ortho
configurations.

To be complete, let us mention that we insert one more
half-wave plate, (λ/2)det, just in front of the polarime-
ter which performs a symmetry of the outgoing probe
polarization with respect to the symmetry plane of the
polarimeter, for discrimination between true polarization
tilts and instrumental imbalances [22]. Then, using the
four reversals σcal = ±1, σEl

= ±1, σpr = ±1, σdet = ±1,
of the calibration angle θcal, the electric field �El and
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half-wave plates (λ/2)pr and (λ/2)det respectively, the
PV quantity θpv is reconstructed as the El-odd, calibrated
linear dichroism:

G = θcal

〈
σEl

[ 〈σdetD
at({σj})〉σdetσcal

〈σdetσcalDat({σj})〉σdetσcal

]〉
σEl

σpr

.

(26)
The experiment [11,13] consists in recording successively
the four values of Gy, Gx, GY , GX of G for the four con-
figurations ŷ, x̂, Ŷ , X̂ of ε̂ex. In the next sections of this
paper, we show that the cylindrical symmetry can help
in identifying and rejecting contributions to G (Eq. (26))
due to transverse �E and �B fields, or misalignments.

We would like to emphasize that the present method
involving simultaneous rotations of the probe polariza-
tion and the polarimeter by an angle φ can be extended
to experimental situations more general than the present
pump-probe APV experiment. In particular, experiments
have been made [23] where the excited state density ma-
trix is endowed with a high-order polarization moment, of
rank κ ≥ 4. This can happen in our experiment at sec-
ond order in an applied magnetic field. If the detection
process happens to be simultaneously modified (we will
see an example in Section 5.2 arising also from a second
order magnetic perturbation), the detection tensor can ac-
quire a tensorial contribution of the same rank κ. Then,
the polarimeter imbalance will not be given only by the
contraction of two second-order irreducible tensors as in
equation (23), but it will also contain terms involving the
contraction of higher order tensors

∑
q

κ
−κ〈T̂ (κ)

q 〉D(κ)
−q (using

here the spherical tensor notation). We shall see in the
next sections that the presence of a second-rank align-
ment, with symmetry axes lying out of the polarimeter
symmetry planes, gives rise to a cos (2φ) modulation of
the imbalance signal. If the higher moments 〈T̂ (κ)

q 〉 of the
density matrix and the detection moments D(κ)

−q obey sim-
ilar condition, then a signal modulation ∝ cos (κφ) is to
be expected.

3.6 Defect invariance under global rotations
of the experiment

We cannot take for granted that during global rotations
of the experiment about the common beam axis all trans-
verse fields remain invariant. In this section we want to
discuss this assumption and present arguments which give
it some support. There is no problem of course concerning
the laboratory magnetic field imperfectly compensated,
nor a possible transverse electric field which results from
an Êl/k̂ misalignment and reverses with the voltage ap-
plied to the cell. But one may be concerned by the be-
havior of the electric and magnetic fields arising from
the space charge developed inside the cesium cell. The
space charge results from photoionization taking place on
the cell windows at each excitation pulse [24]. Therefore,
the question at issue here is that of a possible correla-
tion between the direction of the excitation polarization

and the electron distribution responsible for transverse �Et

and �Bt fields. Would such a correlation exist, our assump-
tion would fail. Thus, we are concerned by the angular
distribution of the electrons emitted by the surface of a
sapphire crystal normal to the trigonal symmetry axis via
the photoionization process. The linearly polarized pho-
tons, with λ = 540 nm, propagate along the symmetry
axis. In practice, the sapphire surface, at a temperature
around 500 K, constitutes the internal side of the windows
of the cylindrical cell containing cesium vapor. (This latter
is at saturated vapor pressure of a reservoir kept at 410 K.)
Those windows have been annealed at a temperature of
∼1400 K before being mounted on the cylindrical tube. Af-
ter annealing the surface is reconstructed: we have found
by AFM imaging and laser beam diffraction [29] the pres-
ence of regularly spaced vicinal steps, several hundreds of
nanometers apart. This situation is known to be favorable
for reducing the adsorption probability, except for edge
sites which favor chemisorption [30] but concern only a
tiny fraction of the surface.

According to the findings of references [27,28], we shall
assume that the surface states can be constructed mainly
from the Al 3p orbitals. We shall take for the density ma-
trix describing the surface states the following expression:

ρS =
∑

i

at(i) (|3px(i) 〉〈3px(i)|+ |3py(i) 〉 〈3py(i) |)

+ al(i)|3pz(i)〉〈3pz(i) |. (27)

The summation i runs over the surface aluminum atoms
endowed with dangling 3p bonds due to the presence of
cesium adatoms. Under the experimental working condi-
tions, T = 500 K, the surface coverage is small. It is then
reasonable to assume that the dangling Al 3p bonds are
randomly distributed on the surface so that the phase fac-
tor between the orbitals (i) and (j), exp(i (�ri − �rj) · �k) is
also randomly distributed. This explains why we have not
included in ρS non diagonal terms like |3px(i) 〉〈3px(j)|.

Since the incident photons belong to the optical range
it is legitimate to use the dipole approximation for de-
scribing the photoionization process. Centrifugal barrier
effects imply that the p → s transition amplitude domi-
nates the p → d one. Let us denote by xψ3p(r), y ψ3p(r)
and ψout

s (pe, r) the wave functions associated respectively
with the 3px, 3py orbitals and the outgoing s wave elec-
trons with momentum pe. With the help of equation (27)
the surface photoionization cross section is given, up to
phase space factors, by:

σ(3p→ s, pe) ∝
∣∣∣∣
∫

d3r xψ3p(r)(�r · �εex)ψout
s (pe, r)

∣∣∣∣
2

+ (x→ y) . (28)

Remembering that the photon momentum is along the
z-axis, we can write �r · ε̂ex = x cos(φ) + y sin(φ), where
φ gives the direction of the polarization vector �εex in
the (x, y)-plane. Performing the space integral in equa-
tion (28) one sees that the first term in the right
hand side is proportional to cos2(φ) and the second
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to sin2(φ) times the square of the same radial inte-
gral

∫ ∞
0 dr r4 ψ3p(r)ψout

s (pe, r). In more physical terms,
it means that the distribution of the photo-electrons has
no dependence on the direction of the photon linear polar-
ization �εex in the (x, y)-plane. Such a result hinges on the
assumption that the surface states near the edges of the
conduction band are produced mainly by Al 3px,y orbitals,
according to the authors of reference [27] (Sect. IV.A).
It should be kept in mind that adding a contribution
∝ |3s(i) 〉〈3s(i)| to the surface density matrix ρS would in-
droduce a cos2(φ) dependence in the angular distribution
of the photo-electrons1, like for instance in the photelec-
tric effect in atomic hydrogen. No evidence for a cos2(φ)
term has been found in the measured radial electric field
produced by the beam of surface photo-electrons accel-
erated by an applied electric static field normal to the
surface [24]. This gives some empirical support for the ba-
sic assumptions leading to formula (27), in particular, for
the absence of Al 3s orbital contributions.

4 Cylindrical symmetry breaking generated
by transverse �Et, �Bt fields or misalignment

In this section, we consider the modification of the two-
channel polarimeter imbalance Dat resulting from the si-
multaneous presence of stray transverse �Et, �Bt fields. The
important feature of the present mechanism is that it
can generate a PV-like signal which, although a physi-
cal scalar, shares the properties of the true PV signal and
in particular the cylindrical symmetry. Fortunately, this
potential source of systematic effect is accompanied by an-
other imbalance contribution which breaks the cylindrical
symmetry. In the present deviation from the ideal con-
figuration, the imbalance signal anisotropy indicates the
presence of possible systematic effect and can yield an up-
per bound for its magnitude.

4.1 Alignment correction induced by �Et and �Bt fields

Now, we evaluate the second-order correction to the align-
ment tensor ∆

(2)Ae
i j generated by the combined action of

the fields �Et and �Bt, using the method developed in Sec-
tions 2.2 and 3.2.

4.1.1 �Et-induced correction to the Stark alignment

We start by the first-order modification of the Stark align-
ment ∆

(1)Ae
i j(0) resulting from the presence of �Et. The

vector �bSt which defines the Stark transition matrix has
1 This can be verified by making in equation (28) the sub-

stitutions needed for the evaluation of σ(3s → p, pe) instead
of σ(3p→ s, pe), namely xψ3p(r)→ ψ3s(r) and ψout

s (pe, r)→
(�pe ·�r) ψout

p (pe, r) leading to an angular distribution of σ(3s→
p, pe) ∝ |ε̂ex · �pe|2, hence to a cos2(φ) dependence in the trans-
verse plane.

a correction term ∆
(1)

Et

�b = i β Êt ∧ ε̂ex, which clearly lies
along k̂. The corresponding correction ∆

(1)Ae
i j(0) is then

proportional to (�bSt)i k̂j + (i↔ j). It does not contribute
to the polarimeter imbalance SX − SY ∝ Di j · Ae

i j since
in the ideal configuration the detector tensor is purely
transverse, i.e. k̂i · Di j = 0.

4.1.2 �Bt Larmor precession of the �Et correction
to the Stark alignment

For there to be a non-zero correction, another kind of
defect must be present. For instance a transverse mag-
netic field �Bt would induce a Larmor precession of the
tensor Ae

i j(0) (Eq. (12)) making the defect detectable by
the polarimeter. The Larmor precession, of angular fre-
quency ωF ′ is equivalent to a rotation of the vector �b
(and �b∗) about the axis B̂t by the angle ωF ′ τ = γF ′Btτ .
The duration τ represents the averaged time spent by the
atoms in the excited state with typical values for short
pump-probe delay between 5 and 15 ns, depending mainly
on the saturation. Note that the sign of the Larmor pre-
cession about �Bt, given here by the sign of ωF ′ is opposite
in the two 7S hyperfine states2. In practice |ωF ′ | τ � 1,
so that the rotation can be considered as infinitesimal,
and the variation of �b induced by the Larmor precession
can be written as: ∆

(1)

L
�b = γF ′BtτB̂t ∧ �b. The combined

effect of �Et and �Bt is then described by a second-order
correction to the vector �bSt:

∆
(2) �bSt = ∆

(1)

L (∆
(1)

Et
�bSt) = iβ γF ′ τ �Bt ∧ ( �Et ∧ ε̂ex)

= iβ γF ′ τ
(
( �Bt · ε̂ex) �Et − ( �Bt · �Et)ε̂ex

)
. (29)

We obtain the mixed second order �Et , �Bt correc-
tion to Ae

i j(τ) contributing to SX − SY by replac-

ing in equation (12) Re{bi b∗j} by Re{(�bSt)i (∆
(2) �b∗)j +

(�bSt)j (∆
(2)�b∗)i}:

∆
(2)Ae

i j(τ) = 8g2
F ′β2El γF ′τF

(
( �Bt · �Et)(Êl ∧ ε̂ex)i(ε̂ex)j

−( �Bt · ε̂ex)(Êl ∧ ε̂ex)i ( �Et)j + (i↔ j)
)
.

Note that the first term in the above expression of∆
(2) Ae

i j

is proportional to ∆pv Ae
i j (see Eq. (15)) and, as a conse-

quence, is expected to lead to a contribution to SX − SY

simulating the true PV contribution, if �Et · �Bt is even un-
der the �El reversal.

To get the final correction to the atomic imbalanceDat

we perform the tensor contraction of ∆
(2) Ae

i j(τ) with the

2 Given that the magnetic moment of the electron is nega-
tive, the precession occurs in the positive sense for the F ′ =
I + 1/2 sublevel with gF ′ > 0.
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differential detector tensor Di j :

∆
(2)
Dat( �Et, �Bt) = K∆

(2)Ae
i j(τ) · Di j

= 8g2
F ′β2ElγF ′τ KF

[(
( �Bt · �Et)Schir(ε̂X , Êl)

−( �Bt · ε̂ex)(Êl ∧ ε̂ex · ε̂X)( �Et · ε̂X)
)
− (X ↔ Y )

]
, (30)

where Schir(ε̂X , Êl) = −Schir(ε̂Y , Êl) is the pseudo-scalar
given by the formula (22). It is quite clear, as announced,
that the first term, although being a physical scalar, due to
the pseudo-scalar T -even factor γF ′ τ (B̂t·Êt) is a potential
source of sytematic error for the PV signal. In contrast to
the PV-like term, the second term contains an anisotropic
part. It is convenient to rewrite Dat under a form where
Schir(ε̂X , Êl) appears as an overall factor. To do this, we
use the formulae (20) defining ε̂X and ε̂Y and the explicit
form of Schir(ε̂X , Êl) given in equation (22). Performing
explicitely the antisymmetrization with respect to the ex-
change X ↔ Y , one arrives at the expression:

∆
(2)
Dat( �Et, �Bt) = 16 g2

F ′β2El γF ′τ KF Schir(ε̂X , Êl)

×
(
�Bt · �Et − ( �Bt · ε̂ex)( �Et · ε̂ex)

)
, (31)

which exhibits the presence of a signal anisotropy under
the global rotation of the experiment. Note that the last
parenthesis can be split into the sum of a purely isotropic
contribution and a purely anisotropic one:

1
2
�Bt · �Et −

(
( �Bt · ε̂ex)( �Et · ε̂ex)− 1

2
�Bt · �Et

)
. (32)

We can write explicit expressions for the variations of this
geometrical factor when global rotations of the experiment
are performed. The initial position of ε̂ex ‖ ŷ in the labo-
ratory frame will serve as a reference axis. If we define the
angles: (ŷ , ε̂ex) = φ, (ŷ , Êt ) = θEt and (ŷ , B̂t ) = θBt , we
obtain:

(
B̂t · Êt − (B̂t · ε̂ex)(Êt · ε̂ex)

)
=

1
2

(cos (θBt − θEt)− cos (2φ− θBt − θEt)) . (33)

We note that this expression is independent of the direc-
tion chosen as origin of angular coordinates, as it should
be. Furthermore, the purely anisotropic contribution has
a dependence on the rotation angle φ which only involves
Fourier components at the frequency 2φ. Consequently,
four measurements corresponding to ε̂ex ‖ ŷ, X̂, x̂, and Ŷ
are sufficient for us to obtain full information about the
effect induced by the spurious fields �Et, and �Bt. We notice
that ∆(2)Dat( �Et, �Bt) cancels when �Et is parallel to ε̂ex, as
expected.

This atomic imbalance, like the PV one, is to be
compared in magnitude to that of the calibration tilt

angle (Eq. (24)):

θcal
∆

(2)
Dat( �Et, �Bt)
Dat(θcal)

=

GEB (cos (2φ− θBt − θEt)− cos (θBt − θEt)) ,

where

GEB = ωF ′τ
Et

El
(ẑ · Êl) = γF ′Btτ

Et

El
(ẑ · Êl). (34)

Like the PV one (Eq. (25)), this ratio is odd under �El re-
versal, if the quantity �Et · �Bt is even. Therefore, we have
shown the possible existence of a magnetoelectric optical
effect which, in a given (ε̂ex, ε̂pr) configuration, can con-
tribute to the APV quantity, the El-odd, calibrated linear
dichroism G, defined by equation (26).

4.2 Properties of the isotropic and anisotropic
contributions

The signal corresponding to expression (31) has the sym-
metry properties expected for a signal of electromagnetic
origin. It is invariant under space reflection. The isotropic
contribution only differs from the APV signal by the pseu-
doscalar factor �Et · �Bt which cancels out only if the two
transverse fields are orthogonal. It is also invariant under
time reversal since the precession angle ωτ and �Bt are
both T -odd quantities. This isotropic contribution mim-
ics the APV signal only if its behaviour in El-field rever-
sal, like that of the APV signal is odd, that is to say
if ( �Et · �Bt) is itself even under this reversal: i.e. both
fields are even or both odd. Hence there are two dif-
ferent contributions. When we perform successive simul-
taneous rotations of ε̂ex and ε̂pr by increments of 45◦,
ε̂ex = ŷ, X̂, x̂, Ŷ (φ = 0◦, 45◦, 90◦, 135◦), the transverse
fields remain fixed. Measuring the four calibrated linear
dichroism signals Gy, GY , Gx, GX , actually provides us
with two independent evaluations of the isotropic part:

Sxy =
1
2
(Gx +Gy) = θpv +G( �Et, �Bt),

SXY =
1
2
(GX +GY ) = θpv +G( �Et, �Bt), (35)

where

G( �Et, �Bt) =

−G+

EB cos (θB+
t
− θE+

t
)−G−

EB cos (θB−
t
− θE−

t
). (36)

The two terms G
+

EB and G
−
EB respectively give the contri-

butions associated with �E+
t and �B+

t , both even, and �E−
t

and �B−
t , both odd under �El reversal. The important point

is that we expect — and we observe [11] — equality to
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within noise between Sxy and SXY
3. On the other hand,

the signal anisotropy can be evaluated from the differences
Dxy ≡ (Gx −Gy)/2 and DXY ≡ (GX −GY )/2:

Dxy = −G+

EB cos (θE+
t

+ θB+
t
)−G−

EB cos (θE−
t

+ θB−
t

),

DXY = −G+

EB sin (θ
E

+
t

+ θB+
t
)−G−

EB sin (θE−
t

+ θB−
t

).
(37)

In order to obtain G( �Et, �Bt) we need additional informa-
tion we can actually extract from complementary mea-
surements performed in presence of an auxiliary magnetic
field. Measurements similar to the PV ones made in such
a field of known direction and magnitude (0.20 mT) yield
the directions and magnitudes of �E+

t and �E−
t , the trans-

verse field contributions even and odd in �El reversal. How-
ever, as we shall see in Section 5, the situation is some-
what complicated by the presence of symmetry breaking
effects of another kind which lead to purely anisotropic
contributions.

4.3 Comment on the �Et · �Bt induced magnetoelectric
dichroism

We have just demonstrated theoretically the existence in
our atomic system of a linear dichroism generated by two
parallel, transverse fields �Et and �Bt. Its magnitude is pro-
portional to �Et · �Bt and its axes are oriented at ±45◦ to
the field direction. Our observations confirm the expected
magnitude (see Sect. 6 for a more detailed discussion).
We have actually exploited it thoroughly for controlling
the stray Et-fields generated in Cs filled alumina cells by
electric charges produced by photoionization [24].

Such an effect supported by symmetry arguments
was predicted long ago by Jones [31]. Despite searches
in molecular liquids, it remained unobserved until re-
cently [32], when the samples were placed under extreme
experimental conditions: a Bt field of 15 T and an Et

field of 1.75 kV/cm. Therefore it is worth underlining the
differences between our present experimental conditions
and those which correspond to the molecular liquid sam-
ples used for this kind of observation: number densities
about 106 times lower, magnetic fields 104 to 107 times
smaller, and a transverse �Et field about one hundredth of
the size of the longitudinal �El field of comparable mag-
nitude which provides the vapor with axial symmetry.
Above all one should bear in mind that in the present
case we have a dilute atomic sample in a particularly sim-
ple atomic state. Consequently, the effect of the magne-
toelectric dichroism observed on the probe beam can be
given a simple, intuitive and quantitative interpretation:

3 Let us note that in the case where �Et would exhibit a
cos2 (φ) modulation, though considered unlikely (Sect. 3.6)
then the linear dichroism signals Gy , GY , Gx, GX would ac-
quire a cos (4φ) modulation. It can be predicted that this would
lead to a difference between Sxy and SXY , which is not observed
in our measurements. Dxy and DXY would not be modified.

the Larmor precession of the atomic alignment generated
in the excited state by interference between the Stark-
induced dipoles involving both the longitudinal and trans-
verse components of the electric field. But this mechanism
is not unique. For other illustrations which lend them-
selves to detailed calculations also in the context of atomic
vapors excited via a highly forbidden transition, see for in-
stance the forthcoming Section 4.5 and reference [33].

4.4 Combined effect of an �Et field and a pump-probe
misalignment

We have shown in Section 4.1 that the alignment asso-
ciated with a small transverse electric field �Et leads to
an atomic imbalance in presence of a transverse magnetic
field �Bt. (The case of an El-odd �Et field accounts for a
misalignment between the applied �El field and the excita-
tion beam direction k̂ex. By definition ẑ is colinear to k̂ex.)
We now want to show that a misalignement of the probe
beam with respect to the excitation beam leads to the
same effect. This deviation from the ideal configuration
can be described by applying to the polarized probe beam
an infinitesimal rotation by a small angle δα about a unit
vector n̂ normal to the excitation photon momentum �kex

such that δα n̂ = k̂ex ∧ k̂pr.
Such an infinitesimal rotation of the probe beam leads

to a correction ∆
(1)

misDi j of the detection tensor (Eq. (17))
which is given by:

∆
(1)

misDi j = δα ((n̂ ∧ ε̂X)i (ε̂X)j

+(ε̂X)i (n̂ ∧ ε̂X)j − (X → Y )) . (38)

By combining the effect of the probe beam tilt with the
transverse electric field Êt correction to the alignment ten-
sor ∆

(1)Ae
i j ∝ bi∆

(1)

Et
bj + (i ↔ j), we predict a second-

order correction to the atomic imbalance Dat:

∆
(2)
Dat(Et,mis) = K∆

(1)Ae
i j(0) ·∆(1)

misDi j .

Performing explicitly the tensor contraction together with
the antisymetrisation with respect to X ↔ Y , we obtain
the final expressions:

∆
(2)
Dat(Et,mis) = −16 g2

F ′β2El δαEtK F Schir(ε̂X , Êl)

×
(
n̂ · Êt − (n̂ · ε̂ex)(Êt · ε̂ex)

)
,

θcal
∆

(2)
Dat(Et,mis)
Dat(θcal)

=GE δα

(
n̂ · Êt−(n̂ · ε̂ex)(Êt · ε̂ex)

)
,

with GE δα = δα
Et

El
(ẑ · Êl). (39)

Thus only an �El−even transverse field, �E+
t , can give rise to

a harmful �El−odd imbalance. It is also interesting to note
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the close similarity of the above result with that induced
by Et, Bt transverse fields (Eq. (31) in Sect. 4.1), with
just a single substitution performed on the P -even T -even
rotational invariant:

ωF ′B̂t −→ − δα n̂. (40)

It is actually not surprising that the Larmor precession
and a small rotation of the probe polarized beam lead to
similar effects. Both effects arise from the same correction
to the second-rank tensor ∆

(1)Ae
i,j , via either a small rota-

tion of this tensor itself about B̂t in the former case, or a
small rotation of the detection tensor about n̂ in the latter
case. The above exact correspondence, and in particular
the change of sign, can be understood from rather simple
rotational invariance considerations4.

4.5 Other mechanisms involving the M1 amplitude

As already noted in Section 2.2.4, for there to be a system-
atic effect involving the M1 amplitude there must also be a
transverse electric field. We also stressed that such a field
alone is not enough. We now show how combining both
electric and magnetic transverse fields can generate a sys-
tematic effect. Since the typical value of |M1/βEl| in our
experiments is �2 × 10−2, it looks like we could consider
an M1-Stark-induced contribution as a third order effect.
In reality, because the presence of a �Bt field makes slight
mixing of the different hyperfine states, the M1-Stark in-
terference effect is enhanced. In fact, given that the hy-
perfine substates are no longer pure F states, the scalar

4 Let us first illustrate this point for a simpler configuration:
�a and �b are assumed to be two physical 3-dimensional vectors
and R(n̂, φ) a rotation acting only upon the vector �b. Let us

assume further that the scalar product �a · (R(n̂, φ)�b) is associ-
ated with some physical observable; it is invariant under any
global rotation R′ acting on the two vectors �a and �b. By choos-
ing R′ to be the inverse of R: R′ = R−1(n̂, φ) = R(n̂,−φ), we
get immediately the identity:

�a · (R(n̂, φ)�b) = R′�a · (R′R(n̂, φ)�b) = (R−1(n̂, φ)�a) ·�b.

The physical content of the above equation can be stated as fol-
lows: For a physical measurement involving the scalar product
of two vectors, the effect of a rotation R acting upon the vector
on the r.h.s. is identical to that of the inverse rotation R−1

acting upon the vector on the l.h.s.
What is involved here is actually the same identity, but applied
to the contraction of two second-order tensors, Ai j · Bi j . It is
not difficult to generalize. We can begin by considering the
case of two factorized tensors: Ai j = ai bj and Bi j = ci dj .

The contraction of them reads: Ai j · Bi j = (�a · �c) (�b · �d). Let

us rotate the r.h.s tensor: Bi j → BR
i j = (R�c)i (R �d)j . We get

immediately: Ai j ·BR
i j = (�a·R�c)(�b·R �d) = (R−1�a·�c)(R−1�b·�d) =

AR−1

i j ·Bi j . Then, the property can be extended to the general
case by noting that an arbitrary second-order tensor Ai j can
always be written as a linear combination of the nine factorized
tensors constructed from three independent vectors: �a1,�a2,�a3.

Stark amplitude α�El · ε̂ex can connect S-states having dif-
ferent hyperfine quantum numbers. As a result, the size
of the perturbation is reinforced by a factor |α/β| � 10.
This is why we now want to focus our discussion on this
particular contribution.

The matrix element of the scalar Stark-induced ampli-
tude between the 6S, F and the 7S, F ′ states with F ′ �= F
is calculated using first-order perturbation theory5. It is
convenient to write the result in terms of a correction con-
tribution to the effective dipole �deff (see Eq. (1)):

∆
(2)

αEt,B
�deff = −α�Et(F ′ − F )

γSB

∆W7S
PF ′�σ · B̂PF ,

where γS (= γF ′/gF ′) is the gyromagnetic factor for the
electron spin. We write the resulting correction to the com-
plex vector �b which appears in the effective transition ma-
trix Teff (see Eq. (5)) as:

∆
(2)

αEt,B
�b = α( �Et · ε̂ex)(F ′ − F )

γSBt

∆W7S
PF ′B̂tPF .

We insert the above result in the general expression of the
excited state alignment, equation (13), to get a new M1

amplitude contribution ∝ Re{(bM1)i∆
(2)
bj + (i ↔ j)},

where �bM1 = −M1k̂ ∧ ε̂ex. We now have all we need to
write the alignment of the excited state resulting from
the interference between the M1 and the hyperfine-mixing
scalar Stark amplitudes:

∆
(3)

(M1 αEt,B)Ai j = 4g2
F ′ F(F ′ − F )

γSB

∆W7S

(
M1α�Et · ε̂ex

)

×
(
(B̂t)i(k̂ ∧ ε̂ex)j + (i↔ j)

)
. (41)

Contracting this tensor with the detection tensor Di j we
get the following contribution to the atomic imbalance:

∆
(3)
Dat(M1, αEt, Bt) = 16g2

F ′ FK(F ′ − F )
γS

∆W7S
M1α

× Schir(ε̂X , Êl)( �Et · ε̂ex)( �Bt · ε̂ex) (k̂ · Êl)

= 16g2
F ′ FK (F ′ − F )

γS

∆W7S
M1 α

× Schir(ε̂X , Êl) (k̂ · Êl)

×
[
1
2
�Et · �Bt +

(
( �Bt · ε̂ex)( �Et · ε̂ex)− 1

2
�Et · �Bt

)]
. (42)

The last factor in the r.h.s of the above equation has been
split into its isotropic and its purely anisotropic parts. It
is interesting to compare it with that obtained previously
for the �Et · �Bt effect, equation (32): the only difference lies
in a reversal of the relative sign of these two contributions.
To satisfy the �El−odd behavior, here, in contrast to the
previous case, the scalar product �Et · �Bt has to be odd un-
der �El reversal. This is why it has been considered here,

5 We deliberately omit here the magnetic perturbation of
the 6S, F state which has a larger hyperfine structure and leads
to an effect about 5 times smaller.
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even though it would be about 20 times smaller were the
�El-odd and �El-even contributions to �Et · �Bt of equal mag-
nitude.

One may note also the presence of the additional factor
(k̂ · Êl) in the above expression (42): it has appeared in a
natural way via the contribution of the M1 amplitude and,
combined with the factor ( �Bt · ε̂ex), it ensures T -reversal
invariance of the result in which, by contrast to the Larmor
precession dependent contribution (Eq. (31)), the time no
longer appears explicitly.

Although we are not going to present here the de-
tails of the corresponding calculation, we would like to
mention that the atomic imbalance associated to the vec-
tor Stark amplitude, instead of the scalar one, involves
this time the same angular dependence as that given by
equation (32). Note that this contribution is suppressed
by a factor |β/α| = 1/10 with respect to that given by
equation (42).

For completeness, let us quote the result deduced
from equation (42) after normalization by the calibration
imbalance (Eq. (24)):

θcal
∆

(3)
Dat(M1, Et, Bt)
Dat(θcal)

= −(F ′ − F )
γSBt

∆W7S

M1αEt

(βEl)2

× (Êt · ε̂ex)(B̂t · ε̂ex)(k̂ · Êl). (43)

5 Symmetry breaking by two transverse
magnetic fields, �El-odd and �El-even

Let us suppose that two transverse magnetic fields, �B+
t

and �B−
t , one even and the other odd under �El-reversal

are now the source of cylindrical symmetry breaking. Since
the dominant Stark alignment is �El-even, those two fields
having opposite behavior under �El-reversal can introduce
an �El-odd character in the effect arising from perturbation
to second order. Different possible mechanisms can enter
into play, so we shall first consider one of them in detail.
Afterwards, we shall present a generalization of the main
features of the results.

5.1 Larmor precession of the Stark alignment
about a �Bt field changing its direction under �El

reversal

We consider first the effect of Larmor precession. We
shall show that the dominant Stark alignment (Eq.
(14)) precessing in a transverse magnetic field acquires a
detectable component of second-order in the infinitesimal
precession angle ωF ′τ = γF ′τBt. The variation of �bSt

induced by the Larmor precession can be written:

∆
(1)

L
�bSt = iβ γF ′ τ �Bt ∧ ( �El ∧ ε̂ex)

= iβ ωF ′ τ
(
(B̂t · ε̂ex) �El − (B̂t · �El)ε̂ex

)
. (44)

Since �Bt · �El = 0, the second term cancels, and since �El is
along k̂pr, it can be easily verified that the second order

correction to the alignment of the type (∆
(1)

L
�b)i(∆

(1)

L
�b∗)j +

i↔ j cannot contribute to a polarimeter imbalance. Even
so, a possible misalignment between the pump and the
probe beams combining to the first order Larmor correc-
tion can contribute, a situation that will be considered
later on (Sect. 5.3).

For the moment, we calculate the second-order correc-
tion to �b associated with an infinitesimal rotation angle
φ = ωF ′τ about B̂t to second order in φ. We can sepa-
rate �b into its components parallel and perpendicular to
the rotation axis:

�b = �b‖ +�b⊥ = (�b · B̂t) B̂t +
(
�b− (�b · B̂t) B̂t

)
.

The transformed vector is then written:

R�b = �b‖ +�b⊥ cosφ+ B̂t ∧�b⊥ sinφ,

which we expand to second order in φ:

R�b = �b‖ +�b⊥

(
1− φ2

2

)
+ (B̂t ∧�b⊥) φ+O(φ3)

= �b+ (B̂t ∧�b) φ+
(
(�b · B̂t)B̂t −�b

) φ2

2
+Oφ3. (45)

In the present situation, we are only interested in the
contribution which alters the direction of �bSt along ĥ =
Êl ∧ ε̂ex at τ = 0:

∆
(2)

L
�bSt = iβEl

ω2
F ′ τ2

2

(
Êl ∧ ε̂ex · B̂t

)
B̂t. (46)

This gives rise to a second order correction to ASt
ij (τ)

obtained by replacing in equation (14) Re{bib∗j} by(
(�bSt)i(∆

2

L
�bSt)j + i↔ j

)
, which leads to the detectable

alignment:

∆
(2)

L Ae
ij(τ) = 2g2

F ′β2E2
l ω

2
F ′τ2F(ĥ · B̂t)

(
ĥi(B̂t)j + i↔ j

)
.

(47)
After contraction with the second-rank detection ten-
sor, the last factor in parentheses can be written
4Schir(ε̂X , Êl) ( �Bt · ε̂ex). This imbalance would not be �El-
odd unless �Bt were the sum of two fields having opposite
behaviour under �El reversal ( �Bt = �B+

t + �B−
t ), which means

that �Bt would change direction when �El is reversed. We
arrive at the final result for the �El-odd imbalance induced
by two transverse magnetic fields respectively odd and
even:

∆
(2)

L Dat( �B+
t ,

�B−
t ) = 8g2

F ′β2E2
l ω

+
F ′ω

−
F ′τ

2KFSchir(ε̂X , Êl)

×
(
(B̂+

t · Êl ∧ ε̂ex)(B̂−
t · ε̂ex) + B̂−

t ←→ B̂+
t

)
, (48)

where ω+
F ′ = γF ′B+

t , and ω−
F ′ = γF ′B−

t . After calibration:

θcal
∆

(2)

L Dat( �B+
t , �B

−
t )

Dat(θcal)
= −ω+

F ′ω
−
F ′τ

2

×
(
(B̂+

t · ẑ ∧ ε̂ex )(B̂−
t · ε̂ex) + B̂−

t ←→ B̂+
t

)
. (49)

When global rotations of the experiment are performed,
the behavior of this signal is purely anisotropic.
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5.2 Generalization of the result to second-order
magnetic perturbations of the pump and probe
transitions

Let us consider the perturbation of the probe transition
by the transverse magnetic field �B+

t + �B−
t which is well

known (see for instance [34]) to be responsible for a lin-
ear dichroism quadratic in this field, the so-called Voigt
effect. Here we are interested in its �El-odd contribution
∝ B+

t B
−
t . In the evaluation of the second-rank tensor op-

eratorOij (Eq. (18)), the �Bt field shows up in two different
ways:

– it modifies the wavefunctions and thus the transition
probabilities;

– it shifts the energy levels.

The magnitude of the perturbation is given by the ratio
of the Zeeman frequency shift to the line width: ωF /∆ω ∼
10−4/µT. In the present context, this effect can be consid-
ered as a second-order modification of the detection tensor
(see Eq. (17)) by the transverse magnetic field. We obtain
this ∆(2)Di j modification by performing the contraction
of the two second-rank tensors, B̂jB̂k which represents the
perturbation and the unperturbed Di k detection tensor:

∆
(2)Di j ∼

(ωF ′

∆ω

)2

(B̂t)i(B̂t)kDj k

∼
(ωF ′

∆ω

)2 (
(B̂t)i(B̂t · ε̂X)(ε̂X)j − (X ↔ Y )

)
.

When this detection tensor modification is contracted
with the Stark alignment tensor, we get

∆(2)Di j · ASt
i j =(ωF ′

∆ω

)2 (
(B̂t · ε̂X)(B̂t · ĥ)(ĥ · ε̂X)− (X ↔ Y )

)
.

This yields a second-order correction to the atomic po-
larimeter imbalance:

θcal
∆

(2)
Dat( �B+

t , �B
−
t )

Dat(θcal)
∼

(
ω+

F ′ω
−
F ′

∆ω2

)

×
(
(B̂+

t · ε̂ex)(B̂−
t · ẑ ∧ ε̂ex) + (+↔ −)

)
, (50)

where the expression into parentheses is actually identical
to that appearing in equation (49). Note that the order of
magnitude is also relatively close since ∆ω τ is not very
different from unity.

The treatment given above can be applied without any
difficulty to the second-order magnetic perturbation of the
pump transition, leading to a very similar result. We con-
clude that the magnitude and the structure of the result is
valid for any kind of second-order magnetic perturbation
of the atomic system6.

6 We note that both the excited state density matrix and
the detection tensor actually acquire fourth-order tensorial mo-

5.3 Combined effect of a misalignment
and a magnetic perturbation

As mentioned previously, it is possible to generate a �El-
odd polarimeter imbalance by combining a magnetic per-
turbation and a pump-probe misalignment. This can be
viewed as resulting from the contraction of the first-order
perturbation, ∆

(1)

misDi j (Eq. (38)) to the detector tensor
and the first-order Larmor perturbation ∆

(1)

L ASt
i j (τ) =

−4g2
F ′

(
(∆

(1)

L
�bSt)i(�bSt)j + (i↔ j)

)
to the Stark alignment

ASt
i j (τ) (Eq. (44)). We calculate the �El-odd atomic imbal-

ance:

∆
(2)

misLD
at = ∆

(1)
misDi j ·∆(1)

L ASt
i j (τ)

= −8 g2
F ′β2E2

l ωF ′τδαK F Schir(ε̂X , Êl)

×
(
(n̂ · Êl ∧ ε̂ex)(B̂−

t · ε̂ex) + (B̂−
t ←→ n̂)

)
, (51)

and the calibrated imbalance:

θcal
∆

(2)

misLD
at( �B+

t , �B
−
t )

Dat(θcal)
= ωF ′τδα

×
(
(n̂ · ẑ ∧ ε̂ex )(B̂−

t · ε̂ex) + (B̂−
t ←→ n̂)

)
. (52)

We note again the expected correspondence between this
result and that relative to Larmor precession treated
to second order (Eq. (49)), when one performs the
substitution:

ωF ′B̂+
t −→ −δαn̂.

5.4 Absence of isotropic contribution. Anisotropy
properties

For all the effects considered in this Section 5, the most im-
portant property already mentioned, is the absence of an
isotropic contribution. In the quantities Sxy = (Gx+Gy)/2
and SXY = (GX + GY )/2, the spurious �B+

t
�B−

t effect
cancels out. Therefore, combining results obtained in two
different input ε̂ex polarization configurations is suffi-
cient to eliminate it as a source of systematics. However,
some inconvenience remains as a result of the associated
anisotropy.

If we introduce the angles θ+Bt
= (ŷ0, �B+

t ) and θ−Bt
=

(ŷ0, �B−
t ), this anisotropy is described by the angular de-

pendence:

(
sin(φ − θ−Bt

) cos(φ− θ+Bt
) + θ−Bt

←→ θ+Bt

)
=

sin (2φ− (θ+Bt
+ θ−Bt

)).

ments under the action of the magnetic fields. The polarimeter
signal which would result from their contraction is not consid-
ered here simply because it would not be realistic to extend
our discussion to systematic effects of fourth-order in the ex-
perimental defects that we carefully compensate individually.
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Table 1. Summary of the various signals contributing to the polarimeter imbalance, with the amplitudes involved in the
excitation process (1st column), the experimental defects involved (2nd column) and the angular dependence under global
rotation of the experiment (3rd column). The symmetry-breaking defects are represented by a pair of dimensionless vector
fields of small magnitude. From the product of the quantities appearing in columns 2 and 3 of each line, we obtain the atomic
imbalance of the polarimeter (normalized by the calibration imbalance) which has to be compared with θpv to obtain the
fractional importance of the systematic effect.

Origin Angular dependence

APV signal

βElE
pv
1 − ImE

pv
1

βEl
= θpv none

Possible systematics:

interference defects involved Class 1: Effects with isotropic contribution

βElβEt
Et
El
Êt, ωF ′τB̂t

(
Ê+

t · B̂+
t − (B̂+

t · ε̂ex)(Ê+
t · ε̂ex)

)
+ (+ −→ −)

βElβEt
Et
El
Êt, δα n̂

(
Ê+

t · n̂− (n̂ · ε̂ex)(Ê+
t · ε̂ex)

)
M1αEt

M1αEt

β2E2
l

Êt,
γSBt

∆W7S
B̂t (B̂+

t · ε̂ex)(Ê−
t · ε̂ex) + (+←→ −)

Class 2: Effects without isotropic contribution

β2E2
l ω+

F ′τB̂
+
t , ω−

F ′τB̂
−
t −(B̂+

t ∧ ẑ · ε̂ex)(B̂−
t · ε̂ex) + (− ←→ +)

β2E2
l ω−

F ′τB̂
−
t , δα n̂ (n̂ ∧ ẑ · ε̂ex)(B̂−

t · ε̂ex) + (B̂−
t ←→ n̂)

β2E2
l

ω
+
F ′

∆ω
B̂+

t ,
ω
−
F ′

∆ω
B̂−

t (B̂+
t ∧ ẑ · ε̂ex)(B̂−

t · ε̂ex) + (− ←→ +)

This is similar to the anisotropy caused by the ( �Et · �Bt)+
effect, but with different, and a priori not simply related,
anisotropy direction. Both effects can be present simulta-
neously. This is why we cannot extract G( �Et, �Bt) from the
measured anisotropy. In order to obtain more information
we shall have to rely on another property to be discussed
in Section 6.3.

6 Isotropy tests

6.1 Symmetry breaking effects and ways to reduce
them

We have listed in Table 1 the various candidates to system-
atic effects arising from cylindrical symmetry breaking de-
fects. There are two main classes of such effects. Both have
their magnitude characterized by a 2φ-frequency modula-
tion when the experiment is globally rotated. This implies
that measurements in only four configurations obtained
by successive rotations of 45◦ are necessary to obtain full
information. Effects of the first class are dangerous since
an isotropic contribution remains after our averaging the
linear dichroism signal over those four configurations and
represents a systematic effect superimposed on the APV
signal. However, it is accompanied by an anisotropic con-
tribution of the same order of magnitude which can in-
dicate its presence. In order to reduce its magnitude one
may proceed by reducing the spurious �Et and �Bt fields as
well as the pump-probe beam misalignment. Effects of the
second class provide contributions which cancel out when
averaged over the four input polarization configurations.

They look harmless but in fact complicate the interpreta-
tion of the anisotropy, when present. This is why a correla-
tion test is particularly welcome based on statistical data
analysis which may establish absence of any significant
link between the anisotropic and isotropic contributions
(see Sect. 6.2).

We can also conclude from this discussion how impor-
tant it is to obtain as much information as possible about
the stray fields and, even more so, to minimize them. We
can determine the average value of the stray fields seen
by the atoms simply by exploiting the physical effects
analyzed in this work. By applying “large” (∼0.20 mT),
controlled magnetic fields whose direction can be chosen
and reversed at will, we can isolate the magnetoelectric
dichroism described in Section 4.1. From its magnitude,
proportional to the stray �Et field and to the applied �Bt

field, we deduce the averaged magnitude and direction of
the stray transverse electric field seen by the atoms inside
the interaction region. We have found that the �El-even
contribution is created by a density of electrons circulat-
ing inside the cell [24]. The field is radially distributed
around the axis of the cylindrical cell. Since it cancels for
optimal centering of the interaction region, we can reduce
it. In addition, we can correct the �El-odd contribution by
making tiny tilts (a few ∼10−3 rad) of the cell axis with
respect to the common direction of the beams. In a similar
way we learn about the transverse stray magnetic fields by
deliberately amplifying the B̂+

t B̂
−
t effects (class 2 effects,

Sect. 5.2), using an applied field �Bt of controlled direc-
tion. In order to disentangle the effects of classes 1 and
2 induced by the applied �Bt field, we exploit their differ-
ent behavior under global rotations of the experiment in
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addition to their different relative size when a different
detection probe transition is used.

We note finally that optical rotation data are affected
by the same stray fields which alter linear dichroism. We
use this to obtain complementary information to monitor
and reduce them.

6.2 Statistical analysis of the data

A complete set of data is obtained after cycling over
four orientations of the input polarizations and pro-
vides us with one set of values of the four quanti-
ties Gy, GY , Gx, GX , from which we extract Sxy, SXY ,
the isotropic contributions and Dxy,DXY , the signal dif-
ferences which may reveal anisotropic contributions (see
Eqs. (35–37)). According to the previous considerations
we can write:

Sxy = θpv + S
+

xy + S
−
xy,

where we recognize, besides the expected PV contribution,
two effects of class 1 corresponding to �Et, �Bt fields of
odd or even behaviour in �El reversal (superscript + or –
respectively). A similar equation holds also for SXY . On
another hand, the difference signal

Dxy = D
+

xy + D
−
xy + D

(2)

xy

also displays the contribution D
(2)

xy , resulting from effects
of class 2. It is interesting to underline the connection
existing between Sxy and Dxy by reexpressing Dxy as:

Dxy = −S
+

xy

(
cos 2θE+

t
− cot (θB+

t
− θE+

t
) sin 2θE+

t

)

+ (+↔ −) + D
(2)

xy .

= b+S
+

xy + b−S
−
xy + D

(2)

xy . (53)

The experimental data are to some extent noisy (mainly
because of photon noise) and they constitute random vari-
ables. When a set of data is analyzed there are two ques-
tions to be answered: (i) is the anisotropy statistically sig-
nificant? (ii) if so, is it possible to say whether there is an
associated isotropic contribution?

(i) First, in a Cartesian coordinate system (Dxy,DXY )
we plot one point per data set. Figure 2 illustrates a cloud
of 760 points. We look for any possible deviation of their
gravity center with respect to the origin. For the data
points of Figure 2 this deviation is too small to be signif-
icant, it does not exceed one standard deviation. We con-
clude that this data set shows no significant anisotropy.

(ii) Second we evaluate the correlation coefficient r, be-
tween Sxy and Dxy (and similarly between SXY and DXY )

r =

(∑n
i=1 Sxy

(i)Dxy
(i)

)
/n − 〈Sxy〉〈Dxy〉

sS sD
, (54)

where 〈Sxy〉 and 〈Dxy〉 are the average values and sS

and sD the standard deviations of Sxy and Dxy taken

Fig. 2. Anisotropy test performed on a sample of 760 sets
of plane dichroism data (Eq. (26)) measured for the four dif-
ferent orientations of the input ε̂ex, ε̂pr polarizations: for each
individual set one signal difference, DXY = GX −GY , is plot-
ted versus the other one Dxy = Gx−Gy. On the cloud of points
thus obtained, one looks for a distortion with respect to a cir-
cular distribution centred on the origin. For the data presented
here the center of gravity is indicated. Within the error bars,
σD = 1.8 × 10−7 rad, its coordinates merge into the origin.

over the sample population. Thus, we can test the hy-
pothesis that the population correlation is 0 against the
alternative that it is not, with a chosen confidence level.
According to equation (53), the existence of a linear rela-
tion between Dxy and Sxy indicates that, unless the class 2
effects are largely dominant or the class 1 effects absent,
we should find a correlation between those two variables.
According to a classical method of statistical analysis, see
for instance [35], if the correlation turns out to be signifi-
cant, we can obtain from the value of r an estimation of the
slope of the line of regression of Dxy on Sxy: b = (sD/sS)r,
interpreted as b+ or b− (see Eq. (53)).

In conclusion, the absence of correlation between the
variables Dxy and Sxy (and between DXY and SXY ) is an
important test. It enables us to conclude whether a non-
zero average anisotropy is accompanied by an isotropic
contribution which might alter the PV signal we want to
detect. More precisely, the fraction of Dxy which is corre-
lated to Sxy, i.e. b Sxy, yields an estimate of the systematic
uncertainty which affects 〈Sxy〉.

6.3 Order of magnitude of the residual systematic
effect

From the discussion presented in Sections 4 and 5. it
appears that the most worrying symmetry breaking ef-
fects come from the isotropic contribution of two stray
fields �Et, �Bt or of a pump-probe misalignment δα com-
bined with an �E+

t field. An estimate of the resulting
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systematic effect is directly derived from equation (34)

GEB = (ẑ · Êl)
Et

El
ωF ′τ,

where ωF ′τ is the average Larmor precession angle of the
angular momentum �F ′ during the time spent in the ex-
cited state, and from equation (39)

GEδα = (ẑ · Êl)
Et

El
δα.

We record and average the harmful defects throughout
the whole data acquisition by performing auxiliary mea-
surements, at regular time intervals. If, over the whole
averaging period, one achieves 〈Et/El〉 ≤ 0.5× 10−3 and
〈Bt〉 ≤ 0.1 µT leading to 〈ωF ′τ 〉 ≤ 18 µrad, we arrive at
〈GEB〉 ≤ 0.9 × 10−2 × θpv, and it would make sense to
go for one per cent statistically accurate measurements.
Although keeping the defects reduced at this level is dif-
ficult to achieve, it does not look infeasible. As to the
geometrical pump-probe alignment, it is achieved using
a reference four-quadrant photo-cell sensitive to both the
pump and the probe beams (with respective radius 1.0
and 0.6 mm); this cell is placed alternatively at the input
and at the output of the oven, 30 cm apart. To ensure
δα ≤ 18 × 10−6 rad requires a centering quality of 6 µm
on each quadrant cell. This seems achievable, since once
achieved, the initial alignment is preserved during data av-
eraging using servo-loops stabilizing both the pump and
the probe beam positions on the initial reference, making
use of auxiliary four-quadrant cells on pick up beams.

Finally, we mention a possible source of systematics
which can be generated by the reflection of the pump beam
on the output window of the cell: the reflected beam then
goes back through the interaction region with a wave vec-
tor badly aligned with the probe wave vector. If a stray
transverse, �El-even electric field is also present, this fa-
vors the systematic effect GEδα. This has prompted us
to extinguish the reflection on our cell windows by using
temperature tuning of interferences taking place between
the beams reflected by the inner and outer surfaces of each
window [36].

7 Conclusion

To exploit the recent progress made using a new scheme
for APV detection in cesium [11], we must suppress the
systematic effects in order to match the statistical noise
reduction expected in the next stage of our experiment
aiming at a one percent precision. In the present paper,
we have given a detailed discussion of a large class of sys-
tematic effects which all break the cylindrical symmetry
of the ideal experimental configuration involved in the ex-
citation and detection processes. A perfect experimental
set-up would be invariant under two symmetries. The first
is the mirror reflection with respect to the plane defined
by the linear polarization of the excitation beam and the
electric field �El, colinear to this beam; a breaking of this

is evidence for APV. The second is the cylindrical symme-
try around the common direction of the pump and probe
beams. In an ideal design, the PV signal would be invari-
ant under any global rotation of the experiment around
this direction.

Experimental defects which break mirror symmetry do
not necessarily break the cylindrical invariance: this is the
case with a longitudinal magnetic field, which happens to
be odd under �El reversal. The effect of such a field has
been considered previously [24] and we merely recall here
that an auxiliary Faraday effect measured on a different
probe line allows us to correct for it.

In the present work, our aim was to find solutions to
the broader problem arising from the experimental de-
fects, namely stray fields and misalignments which break
both mirror and cylindrical symmetry properties. We be-
gan by a short review of the properties of the chiral optical
gain, which gives rise to the PV signal in our experiment.
This originates from a mirror symmetry breaking contri-
bution to the excited state atomic alignment, which re-
flects the presence of a PV transition amplitude in the
excitation process, resulting from the weak PV electron-
nucleus interaction.

On this occasion, we have found it convenient to intro-
duce a tensor formalism for calculating the atomic align-
ment in the excited state and the detection signal. This
allows us to incorporate in a systematic way the contri-
butions arising from all the 6S–7S transition amplitudes,
in presence of transverse �Et and �Bt fields breaking the
cylindrical symmetry of the experiment. Our two-channel
polarimetry measurements performed in balanced mode
provide us with a differential, pseudoscalar signal which
makes possible dark-field detection of the PV effect in the
ideal configuration. We have derived a general expression
for the differential polarimeter imbalance, this results from
the contraction of two second-rank tensors, the alignment
tensor and a detection tensor constructed from the eigen-
polarizations of the polarimeter.

It is remarkable that both the APV and the calibra-
tion signals are invariant under simultaneous rotations of
the input pump and probe polarizations around the direc-
tion common to both beams. During such rotations, stray
transverse fields and misalignment remain fixed so that
their relative direction with respect to the beam polar-
izations are modified. As a result they generate new con-
tributions to the atomic polarimeter imbalance. We have
endeavored to answer two crucial questions:
• Are these contributions distinguishable from the true

PV signal?
• Can we extract enough information from their varia-

tions observed during the rotation of the experiment
to separate the true PV signal from systematic effects?

Our analysis shows that associated with each defect there
is either a new contribution to the atomic alignment ten-
sor in the excited state or a tiny rotation of this tensor or
(else) of the detection tensor. The tensor formalism intro-
duced at the outset of the paper is well adapted to derive
all the corrections to the imbalance to second order in the
defects. In order for there to be an �El-odd imbalance which
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simulates the PV signal at least two defects must conspire.
The possible pairs can be arranged into two classes. Both
have their magnitude characterized by a cos (2φ) modu-
lation as the rotations are performed through 180◦. After
we average the results over four configurations obtained by
successive rotations of 45◦, a systematic effect may only
result from the effects belonging to the first class, which
involves the presence of a transverse electric field. To re-
duce the average transverse �Et field seen by the atoms,
we perform auxiliary sequences of measurements with a
known applied magnetic field. We must also compensate
carefully the transverse magnetic fields, using the atomic
signals described in this work.

After optimization, there is the possibility of a left-over
anisotropic contribution which could be associated both
with class 1 and class 2 processes. We have found a way to
get information about the harmful class 1 isotropic contri-
bution by showing that its fluctuations are correlated with
those of the class 1 anisotropy contribution. (No such cor-
relation of course can exist for the APV purely isotropic
term.) A statistical treatment of the data yields an es-
timate of the systematic uncertainty associated with the
class 1 processes.

As an aside remark, we would like to point out that,
during the course of this work, we have established a con-
nection between the most worrying sources of systemat-
ics, generated by parallel components of transverse electric
and magnetic fields, and the magnetoelectric Jones dichro-
ism [31] requiring extreme conditions for being observed
in liquid samples [32]. This highlights the extreme sensi-
tivity of highly forbidden transitions, such as the cesium
6S−7S, to the symmetry of the experimental set-up and
illustrates the great variety of new processes which can be
studied both theoretically and experimentally.

We have also indicated possible extensions of this work
to other studies of atom-field interactions based on the ob-
servation of the azimuthal dependence of cylindrical sym-
metry breaking effects.

We are very grateful to Claude Bouchiat for many fruitful
discussions and to Mark Plimmer for critical reading of the
manuscript.
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24. J. Guéna et al., Appl. Phys. B 75, 739 (2002)
25. M.A. Bouchiat et al., Z. Phys. D 33, 89 (1995)
26. D. Chauvat et al., Opt. Commun. 138, 249 (1997)
27. S. Ciraci, I.P. Batra, Phys. Rev. B 28, 982 (1983)
28. J.A. Rodriguez et al., J. Phys. Chem. 100, 18240 (1996)
29. M. Lintz, M.A. Bouchiat, Surf. Sci. 511, L319 (2002)
30. K.R. Zavadil, J.L. Ing, Conference 950110 (American

Institute of Physics, 1995); M. Brause et al., Surf. Sci.
383, 216 (1997)

31. R.C. Jones, J. Opt. Soc. Am. 38, 671 (1948)
32. T. Roth, G.L.J.A. Rikken, Phys. Rev. Lett. 85, 4478

(2001)
33. D. Budker, J.E. Stalnaker, arXiv:physics/0302096
34. For a review article of resonant magneto-optical effects

in atoms see: D. Budker, W. Gawlik, D.F. Kimball,
S.M. Rochester, V.V. Yashchuk, A. Weis, Rev. Mod. Phys.
74, 1153 (2002), Section VI

35. L.L. Chao, in Statistics Methods and Analyses, 2nd edn.
(Mc-Graw-Hill, 1974), Ch. 14

36. E. Jahier et al., Appl. Phys. B 71, 561 (2000)


